Lösungsmuster und Bewertung

 $V(x) = (16+4x)\cdot(7-x) \text{ cm}^3$

A 2.2

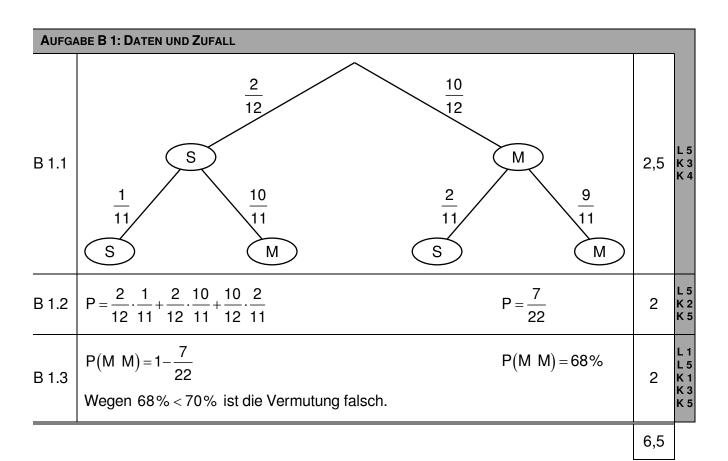
Abschlussprüfung 2024

an den Realschulen in Bayern

Mathematik II

	Aufgabengruppe A	Hauptterm	in	
AUFGA	ABE A 1: FUNKTIONEN			
A 1.1	$y = -3 \cdot (x-4)^2 + 5$	$x,y \in IR$	2	L 4 K 4
A 1.2	z. B.: $y = x + 5$	$x,y \in IR$	1	L 4 K 2
AUFG	ABE A 2: RAUMGEOMETRIE		I	
A 2.0	$A \longrightarrow B$	C_1		
A 2.1	Einzeichnen der Pyramide ABC ₁ DS ₁		1,5	L 3 K 4

AUFGA	ABE A 3: RAUMGEOMETRIE		
A 3	Sinnvolle Modellierung, z. B.: • Breite von drei Fingern in Wirklichkeit: 6 cm • Folglich gilt: Radius des Bodens der Verpackung: 3 cm Höhe der Verpackung: 60 cm • $V \approx 3^2 \cdot 3 \cdot 60 \text{ cm}^3$ $V \approx 1800 \text{ cm}^3$ Die Verpackung hat ein Volumen von etwa 1800 cm^3 .	4	L 2 K 3 K 5

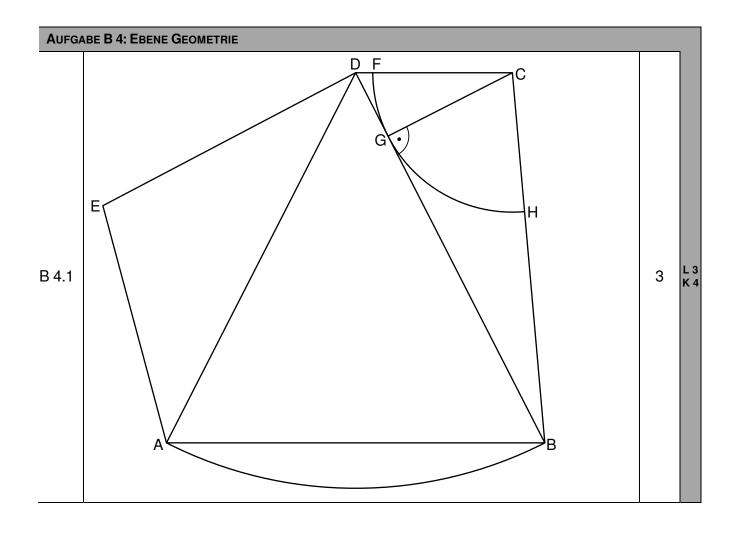

AUFGABE A	4: EBENE	GEOMETRIE

 $5^2 + 12^2 = 13^2$ 169 = 169 (w)A 4 2 Folglich ist das Dreieck ABC rechtwinklig beim Eckpunkt A.

11,5

Aufgabengruppe B

Haupttermin



Seite 2 von 6

AUFGA	ABE B 2: RAUMGEOMETRIE			
B 2.1	$V = \left \overline{MB} \right ^{2} \cdot \pi \cdot \left \overline{TM} \right + \frac{1}{3} \cdot \left \overline{TD} \right ^{2} \cdot \pi \cdot \left \overline{ST} \right - \frac{1}{3} \cdot \left \overline{NE} \right ^{2} \cdot \pi \cdot \left \overline{SN} \right $			
	$\left \overline{SN}\right = (6,5-2)cm$	$\left \overline{\text{SN}}\right = 4,5 \text{ cm}$		
	$\frac{ \overline{NE} }{2 \text{ cm}} = \frac{4,5 \text{ cm}}{6,5 \text{ cm}}$	$ \overline{NE} $ = 1,38 cm	4	K 2 K 5
	$V = \left(1^{2} \cdot \pi \cdot 1, 5 + \frac{1}{3} \cdot 2^{2} \cdot \pi \cdot 6, 5 - \frac{1}{3} \cdot 1, 38^{2} \cdot \pi \cdot 4, 5\right) \text{cm}^{3}$	$V = 22,97 \text{ cm}^3$		
B 2.2	Set 3		1	L 3 K 4
			5	

AUFGABE B 3: FUNKTIONEN S(2|-7) und $P(4|-5) \in p$ $-5 = a \cdot (4-2)^2 - 7$ $a\in IR\setminus \left\{ 0\right\}$ a = 0,5 $L=\left\{ 0\text{,}5\right\}$ p: $y = 0.5 \cdot (x-2)^2 - 7$ $x,y\in IR$ $y = 0.5x^2 - 2x - 5$ 5 B 3.1 5 L 3 K 4 B 3.2 Einzeichnen der Dreiecke $A_1B_1C_1$ und $A_2B_2C_2$ 2 $\big|\overline{A_nB_n}\big|(x)\!=\!\Big\lceil 0,\!5x\!-\!\left(0,\!5x^2\!-\!2x\!-\!5\right)\Big\rceil LE$ $x \in IR; x \in]-1,53;6,53[$ L 4 K 5 B 3.3 1 $|\overline{A_nB_n}|(x) = (-0.5x^2 + 2.5x + 5)LE$

D 0 4	$ \overline{A_nB_n} (x) = (-0.5x^2 + 2.5x + 5)LE$ $x \in IR; x \in]-1.53; 6.53[$	2.5	L 2 L 4
B 3.4	$ \overline{A_0B_0} = 8,13 LE$ $A_{max} = 0,5 \cdot 8,13 \cdot 3 FE$ $A_{max} = 12,20 FE$	2,5	K 2 K 5
B 3.5	$\tan(90^{\circ} - \beta) = 0.5$ $\beta = 63.43^{\circ}$	1,5	L 2 K 2 K 5
B 3.6		3	L 2 L 3 L 4 K 2 K 5
		15	

B 4.2	Die Winkel DBA und BDC sind als Wechselwinkel an den Parallelen AB und CD maßgleich.			
	$\cos \angle DBA = \frac{11^2 + 10^2 - 11^2}{2 \cdot 11 \cdot 10}$	∢DBA = 62,96°	4	L 2 L 3 K 1
		∢DCB = 95°		K 2 K 5
	$\frac{\left \overline{CD}\right }{\sin(85^{\circ}-62,96^{\circ})} = \frac{11\text{cm}}{\sin95^{\circ}}$	$\left \overline{\text{CD}}\right = 4,14 \text{ cm}$		
D. 4.0	$u = \left \overline{AE} \right + \left \overline{ED} \right + \left \overline{DB} \right + \frac{\langle ADB}{360^{\circ}} \cdot 2 \cdot \left \overline{DB} \right \cdot \pi$			
	$ \overline{ED} = \sqrt{6.5^2 + 11^2 - 2 \cdot 6.5 \cdot 11 \cdot \cos(105^\circ - 62.96^\circ)} \text{ cm}$	$\left \overline{\text{ED}}\right = 7,55 \text{ cm}$	4	L 2
B 4.3	<adb 180°="" 2="" 62,96°<="" =="" td="" ·="" −=""><td>∢ADB = 54,08°</td><td>K 5</td></adb>	∢ ADB = 54,08°		K 5
	$u = \left(6.5 + 7.55 + 11 + \frac{54.08^{\circ}}{360^{\circ}} \cdot 2 \cdot 11 \cdot \pi\right) cm$	u = 35,43 cm		
	Einzeichnen der Strecke CG und des Kreisbogens FH			
	$A_{Sektor} = \frac{\langle DCB \rangle}{360^{\circ}} \cdot \overline{CG} ^2 \cdot \pi$			L 2 L 3
B 4.4	$\sin 62,96^{\circ} = \frac{\left \overline{CG}\right }{4,14 \text{ cm}}$	$\left \overline{\text{CG}}\right = 3,69 \text{ cm}$	3	K 2 K 4 K 5
	$A_{Sektor} = \frac{95^{\circ}}{360^{\circ}} \cdot 3,69^2 \cdot \pi \text{ cm}^2$	$A_{Sektor} = 11,29 \text{ cm}^2$		
B 4.5	$A_{BCD} = 0.5 \cdot 11 \cdot 3.69 \text{ cm}^2$	$A_{BCD} = 20,30 \text{ cm}^2$	c	L 1
	$\frac{11,29}{20,30} \cdot 100\% = 55,62\%$		2	L 2 K 5
			16	

Hinweis: Bei einigen Teilaufgaben sind auch andere Lösungswege möglich. Für richtige andere Lösungen gelten die jeweils angegebenen Punkte entsprechend; die Anzahl der Punkte bei den einzelnen Teilaufgaben darf jedoch nicht verändert werden. Insbesondere sind Lösungswege, bei denen der (grafikfähige) Taschenrechner verwendet wird, entsprechend ihrer Dokumentation bzw. ihrer Nachvollziehbarkeit zu bepunkten.

Bei der Korrektur ist zu beachten, dass die Vervielfältigung der Lösungsvorlage zu Verzerrungen der Zeichnungen führen kann.